
values measured in an electric field of opposite polarity. It is evident from the func- 
tions G'(E) and G"(E) (Fig. 2) that the effect of the field depends significantly on the 
concentration of solid phase and increases with growth in C. This conclusion is illustra- 
ted clearly by the data of Fig. 3, which shows the log of the absolute value of the complex 
dynamic viscosity lq*l as a function of concentration C for various values of E. It is 
quite evident that without electric field action the value of [q*l increases monotonically 
with increase in C. However, depending on the electric field intensity, the rheological 
properties of such systems may change over a range of hundreds of thousands of times, with 
a significant role played by the concentration of the solid phase. In fact, from compari- 
son of curves i-6 (Fig. 3), it follows that the optimum electrorheological effect can be 
achieved only with consideration of both factors - the solid phase concentration and the 
value of the applied electric field. (At C = 20% this effect is significantly weaker than 
at C = 60%.) 
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FLOW OF NON-NEWTONIAN LIQUID IN HELICAL 

CHANNELS WITH CONSTANT PITCH 

E. K. Vachagina, R. S. Gainutdinov, 
and Yu. G. Nazmeev 

UDC 532.517.2:532.135 

We carry out an approximate variational solution of a problem of laminar steady- 
state flow of a nonlinearly viscous liquid with a formed velocity profile in he- 
lical channels. 

Helical channels formed by placing helical inserts from strips twisted into a helix 
or screw inserts in a tube (Fig. i) are an effective means of increasing convective 
heat exchange in non-Newtonian media [i]. 

Independently of the form of the transverse cross section, a helical channel has a 
helical symmetry. To use the available single-parametric symmetry group, we introduce new 
independent variables r', ~', and z' related to the independent variables of the cylindrical 
coordinate system by r' = r, ~' = ~ - (2~/S)z, z' = z. The introduction of the new inde- 
pendent variables gives, by making the transformation of variables, 

0 0 0 0 0 2~ 0 0 
- - - - - - ,  , - -  - - + - -  ( 1 )  

Or Or' O~ 0~' Oz S 0~" Oz' 
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Fig. i. Helical channels formed by strip and screw inserts. 

Fig. 2. A schematic block diagram of the solution: i) speci- 
fication of the starting data; 2) ~ is given the value ~0; 
3) calculation of @nm, En; 4) solution of the system (17); 
5) calculation of Vz, 8Vz/8~', 3Vz/Sr; 6) calculation of v; 
7) estimate of the relative error; 8) printout of results. 

In this case, fixed r' and ,' specify a helix, and 8/8z' is the derivative in the direction 
of the helical lines. 

Since we are considering a flow with a formed velocity profile we shall assume that the 
operator 8/3z' with application to the velocity components is equal to zero. Then, under 
the condition that the forces of gravity are negligibly small, the system of equations of 
motion and continuity which describe the flow of nonlinearly viscous liquid in the helical 
channel with an arbitrary transverse cross section has the form (here and below, the primes 
of the new variable r' and z' will be omitted): 

(V OV~ (V~ 2~V~) OV~ V~ 
P k --~r + r S . O(p" r 

OP + - 
Or 

0 
- - -  2 , 

Or -~-~j+7 7 r~] 0~' I ~ a~' ) 

" r ~ 

r Or r 0~' S &p, ,F ~ / 

p - -  , +  . v~ - -  + - -  - 

r Or r S Oq/ ) r O~' 

r ~ Or Fr3 - -  

+ OP 

Oz 

0 ( O ( V ~ / r ) ) §  
o,p ' F 0----7---. 

O ( Vml r ) 4- 1-- 7 2 +  - - ~  r 2 ~ p ,  t l~ --~-~- j q- 
Or .. r" 

2 a (Fv~) 2a 1 8 / 8v  z 
-+- r  2 &p' S r &p' ~,~--~-T-~, , 

�9 r S , 0 ~ '  J S 8 ~ '  

a( 
r ~ ar Fr q- a~" ) 

_ _  A -  

2~ 1 0 ( OVT'~ 2~ 1 a / av,~\ 
s ar s ' 

r Or &9' r S 

(2) 

(3) 

(4) 

(5) 
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with the boundary condition 

V,Ir == V~lv = V~lr ~ o. ( 6 )  

The second invariant of the velocity deformation tensor for the formulated problem has 
the form 

+ Or r , - ~  1 + S J \ &p-----;- \ a,---T- / + V , +  . r" Oq~' 

! av~ )2 

+ 2 OV, 
Oe/ 

O ( V ~  2.~ V z ) ~ 3 (  OV~ 12 ( + ) 2  1 [ (2~ \ 2 ] "  av x2 
( 7 )  

The system (2)-(7) is a complete system of nonlinear equations of motion and continuity 
written in the absence of evolution terms with respect to z. An analysis of the formulated 
problem shows that a solution is possible in the following cases: I) when constructing a 
complete iteration solution; this is possible for individual forms of transverse cross sec- 
tions of helical channels, for example, a tube with a strip twisted into a helix; 2) when 
the form of the channel cross section is simplified; this is applicable for such forms as 
a tube with the screw insert where the cross section normal to the helical line is assumed 
to be a rectangle; 3) in the Stokes approximation of the problem using the "vortex-flow 
function" variables; 4) when using, as a solution, the first approximation of the complete 
iteration solution. 

We consider more fully the last case. We assume that the direction of the flow velocity 
vector in a given point coincides with the direction of the helical line. This statement is 
equivalent to the assumption, in the first approximation of the complete iteration solution, 
that the radial component of the flow velocity is small. Results of experimental studies 
and generalizations show [2] that the assumption of small V r on the whole does not distort 
the hydrodynamic picture which is observed in a helical channel. 

Integrating the equation of continuity (5), in the absence of radial velocity component 

a V I-o ~'\V-- S ~)-- ' with respect to 

ship between V~ and Vz: 

and using the boundary condition (6) gives a relation- 

V~-  2~ rVv (8) 
S 

Then, in the new variables, after the appropriate transformations, the system of equa- 
tions which describes the first approximation of the iteration solution can be written in 
the form 

r &O" - -  S Or [ --~--r J §  l-+, . . . . . .  , r ~ \ S ,I ~ I~ - a T I T  ff S ar 

Oz S O{~' - Or t "t ~ -i- + r 2 + - -  (10)  , , r"- L \ S I T V~ 0 9 '  / r Or ' 

2~ 
--- FV z V~ - S 

with the boundary condition (6). 

If we multiply Eq. (9) by (2~/S)r and combine it with Eq. 

OP 
8z 

where 

(i0), we obtain 

r Or I~*r Or - ' r - -  l r ~ 
- r" S I ~ '  ~* ' a~" } 

(Ii) 

(12) 
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To find V z and V~, we consider the system (11)-(12). 

It is well known that there is no explicit solution of Eq. (12) for a general dependence 
D(I=), and similar problems in the hydromechanics of non-Newtonian liquids are solved by va- 
rious numerical methods. 

it follows from [3, 4] that the function U(I=) satisfies the following inequalities: 

I ~ (12) ~ cl = const > O, 

~t (I~) + 211' (t~) t_. ~ c~ const > O. 

We consider the operator 

LU-- 

We find the derivative of the operator L: 

L'd~ 1 0 r[~ • 1 ' 
r Or - ~ r  : 211" ~- 

+ 7 +  . _ o~' a~' V /  7 -+  

or o~- + 

Oqp' 

x 
0~' Oqo' 

(i3) 

It is seen from (13) that L'uh is a linear operator. 

We show that (L'uh , h) > v11hll 2, where ~ is a positive constant: 

[, x 

L & &p' &p' -~r hrdrdr 

- + \  s ) J o~ - - 7  ~-g~-~' +2W ] +  , r 2 x 

X 
o--7 7 ;  + + - -  aqJ aqo' oqD j 

Integrating by parts with allowance for the boundary condition hlF = 0, we obtain 

@2~'  1 @ Or Or : ~ @ O~' 0~'  rdrdr 

We denote the vector g rad*h  Oh - _l_ ; 1 ~ ( 2 ~ 1 2  Oh - = - -  e2 , t h e n  
one'  | ' /  r~ k s  / o~' 

(L'.h, h)-- SS{l~(grad*h)~ + 2IF [1 + (-~-)2r21 (grad*h, grad*U)Jd.Q.  

L) 
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Then, by analogy with [5], we write 

It' (L'.h, h) ~ c~ (grad* h)"' dfl "~ r C c3 J .1 (grad hy- df~; cs = const. 

Hence, using the Fridrichs inequality (L'uh , h) > 'olihtl :~, the solution of the problem (12) 
is equivalent to finding a minimum of the functional 

I 

F ( U ) =  .t" (L(IU), U)dt--'( ap U) ; U l r - -O.  
6 \ a z  ' 

After transformations, the functional takes the form 

df~ ~* (~) d~-~-2 dP VzdQ. F (V,) = 2 - 
[1 -~ P o az a (14) 

To f i n d  t h e  e l emen t  which i s  r e s p o n s i b l e  f o r  t h e  minimum of  t h e  f u n c t i o n a l  (14 ) ,  we 
use the Ritz method. This element will be sought in the form 

V: = 2 A,,f.. 
1 

The coefficients A n are found from the Ritz 

OF (V~) p,*(l~) , - -  - -  + + x 
aA. Or OrOA. \ S ) ]  

After the calculation of the integrands and 
be written in the form of a system of nonlinear 

~ A~r (A 1 . . . . .  
1 

where 

(15)  

systems 

or, 0 %  da + oP (' C ov. da = o. 
( 1 6 ) 

O~' O~'OA. J az J J OA~ 

appropriate transformations, system (16) can 
equations with respect to An: 

An,) + CEn = O, (17) 

f~ 9. 

is the result of evaluation of the expression in the round brackets of the first integral in 
(16). 

To ensure stability of Ritz process [5] we choose, as the coordinate functions in, the 
eigenfunctions of a related operator 

02U O~'U 
BU 2 + (18) Ox~ Ox~ 

for the regions under consideration. 

The eigenfunctions of the operator B take the form: for a semicircle (tube with a strip 
insert ) 

f,, = ChvJ~ ('%V r )  \ --~ sin~(kcp'), 

where Ckp is chosen from the condition 

~ r " RW 

for a rectangle (transverse section of a tube with a screw insert) 

I n  = 2 ( ]~' p2(R2-}-~:~l)2)l/2 k~(r--ROsi n pnffO'--q),) 
(R2 RO-+ 4@2 (P~)~ sin - -  - -  , ( R ~  - -  R O  (~  -- ~ 1 )  

By analogy with [3, 4], the system (16) was solved by the Gaussian method and, for the 
calculation of ~nm and En, we used a repeated Gaussian quadrature with eight nodes. 

By way of concrete dependence U(I=), we use the generalized rheological Kutateladze- 
Khabakhpasheva equation for a non-Newtonian structurally viscous liquid [6] dq0, = --@~d~, in 
its most interesting particular form 

~, = exp (-- %), (19) 

To solve system (11)-(12) reduced to the form (17) by using the rheological equation 
(19), we determine the order of the calculation. At the beginning of the calculation, the 
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Fig. 3. Calculated dimensionless curves of the axial and circular ve- 
locity components (full and dashed lines, respectively) in the cross sec- 
tions A-A and B-B (r = R/3). @P/Sz = 600 N/m3; S = 0.08 m; ~ is the 
dimensionless coordinate in the cross section B-B. Channel with a strip 
insertion. 

Fig. 4. Calculated dimensionless curves of the axial and circular veloc- 
ity components (full and dashed lines, respectively) in the cross sections 
r = (R l + R2)/2 and A-A. Channel with a screw insertion. 8P/Sz = 600 
N/m~; S = 0.08 m. 

where 

= ( ~  - -  r  - %); ~, = o (~ - ~ ) / ( ~  - %); r = I /~;  T = ~ ( & ) V & .  

quantity ~(I 2) is given some value U = const. It is clear that, for the model (19), this 
will be u0 = i/r Thus, at the first iteration step, the coefficients ~ in Eq. (12) are 
frozen. Calculating all values ~nm using a repeated Gaussian quadrature (solving the sys- 
tem (17)), we determine A n in the first approximation. This is followed by the calculation 
of the matrix ~(I 2) using (19). 

In the second iteration step, system (17) is solved again with allowance for the matrix 
p(I 2) calculated in the first iteration step. The use of the matrix ~(I 2) from the first 
iteration step again freezes the coefficients in (12) and makes it possible to use the 
Gaussian method to determine A n in the second approximation. 

In the subsequent iterations, the procedure is repeated. If the sequence of solutions 
(Azk, A2k, Ank) (k = i, 2,...,~) tends to a limit, this limit is the solution of the sys- 
tem (18). 

A schematic block diagram of the formulated problem in the variational formulation is 
shown in Fig. 2. 

To test the obtained solution, we calculated the hydrodynamic parameters for the case 
of a model structurally viscous liquid (solution Na-KMTs) with parameters 8 = 0.2981 [Pa 2- 
sec]-1; ~0 = 1.9 [Pa.sec]-i; ~ = 13.7 [Pa.sec]-l; ~i = 0 in helical channels with the fol- 
lowing geometrical dimensions: channel with strip insert: R = 0.006 m, S = 0.08 m = const; 
channel with a screw insert: RI = 0.021 m, R 2 = 0.036 m, S = 0.08 m = const. 

Figure 3 shows the results of calculation of the velocity components in a channel with 
a strip insert. A comparison with the experiment [i] on the bulk flow rate shows the ade- 
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quacy within the limits 15%. Figure 4 shows the analogous curves for a channel with a 
screw insert. 

Previously, Nazmeev and Mumladze [7] solved this problem by using the iteration method 
of variable directions. 

NOTATION 

R, ~, z, polar coordinates; R' ~' ' , , z , new independent variables with helical symmetry; 
S, pitch; P, pressure; Vr, V~, Vz, radial, circular, and axial components of the flow velo- 
city; U, effective (structural) viscosity; ~, the region; F, boundary of the region; F, func- 
tional subject to minimization; I2, second invariant of the deformation velocity tensor; An, 
coefficients of the basis function; i, j, exponents of the power; ~, fluidity of the non- 
Newtonian liquid; @0, ~, fluidities for T + 0 and T § ~; T, intensity of the shear stress; 
8, Tz, measure and limit of the structural stability of the liquid; k, number of the itera- 
tion; L, an operator; U and h, arbitrary functions which satisfy the boundary conditions U, 
hlF = 0; Lu', derivative of the operator L; e~, e 2, unit vectors of the cylindrical coor- 
dinate system; 6, exponent of the power in the rheological model; (Lu'h, h), (L(tU), U), 
(SP/az, U), scalar products in the space L2; IlhJl 2, square of the norm of the element h in 
space L2; R, radius of the tube; R I and R2, radius of the inner surface of the outer tube 
and the radius of the outer surface of the inner tube; V, mean-flow-rate velocity of the flow; 
fn (n = l,...,m), a complete and linearly independent system of elements; B, a related oper- 
ator; Jk, Bessel functions; and ~kp, root of the Bessel function. 
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AXISYMMETRIC PROBLEM ON THE IMPREGNATION OF A 

HEATED FILLER BY A VISCOPLASTIC LIQUID 

E. A. Kosachevskaya and V. M. Sidorova UDC 532.546 

This article examines the penetration of a viscoplastic liquid (binder) into 
a preheated porous cylindrical braid (filler) moving inside it. 

The study [i] examined a production process involving the continuous impregnation of 
porous fillers. This process is common in the manufacture of many composite materials. 
Since the viscosity of the binders is often too great at room temperature and since there 
are serious technical problems with the use of high pressure gradients, it has been pro- 
posed that fluid resistance during filtration be reduced by preheating the filler. A 
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